3.436 \(\int \frac{x (a+b \cosh ^{-1}(c x))^n}{\sqrt{1-c^2 x^2}} \, dx\)

Optimal. Leaf size=154 \[ \frac{e^{-\frac{a}{b}} \sqrt{c x-1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac{a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text{Gamma}\left (n+1,-\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt{1-c x}}-\frac{e^{a/b} \sqrt{c x-1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac{a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text{Gamma}\left (n+1,\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt{1-c x}} \]

[Out]

(Sqrt[-1 + c*x]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, -((a + b*ArcCosh[c*x])/b)])/(2*c^2*E^(a/b)*Sqrt[1 - c*x]*(
-((a + b*ArcCosh[c*x])/b))^n) - (E^(a/b)*Sqrt[-1 + c*x]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, (a + b*ArcCosh[c*x
])/b])/(2*c^2*Sqrt[1 - c*x]*((a + b*ArcCosh[c*x])/b)^n)

________________________________________________________________________________________

Rubi [A]  time = 0.421691, antiderivative size = 180, normalized size of antiderivative = 1.17, number of steps used = 5, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {5798, 5781, 3307, 2181} \[ \frac{e^{-\frac{a}{b}} \sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac{a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text{Gamma}\left (n+1,-\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt{1-c^2 x^2}}-\frac{e^{a/b} \sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac{a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text{Gamma}\left (n+1,\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt{1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcCosh[c*x])^n)/Sqrt[1 - c^2*x^2],x]

[Out]

(Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, -((a + b*ArcCosh[c*x])/b)])/(2*c^2*E^(a/b)*S
qrt[1 - c^2*x^2]*(-((a + b*ArcCosh[c*x])/b))^n) - (E^(a/b)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^n
*Gamma[1 + n, (a + b*ArcCosh[c*x])/b])/(2*c^2*Sqrt[1 - c^2*x^2]*((a + b*ArcCosh[c*x])/b)^n)

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 2181

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> -Simp[(F^(g*(e - (c*f)/d))*(c +
d*x)^FracPart[m]*Gamma[m + 1, (-((f*g*Log[F])/d))*(c + d*x)])/(d*(-((f*g*Log[F])/d))^(IntPart[m] + 1)*(-((f*g*
Log[F]*(c + d*x))/d))^FracPart[m]), x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rubi steps

\begin{align*} \int \frac{x \left (a+b \cosh ^{-1}(c x)\right )^n}{\sqrt{1-c^2 x^2}} \, dx &=\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x \left (a+b \cosh ^{-1}(c x)\right )^n}{\sqrt{-1+c x} \sqrt{1+c x}} \, dx}{\sqrt{1-c^2 x^2}}\\ &=\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int (a+b x)^n \cosh (x) \, dx,x,\cosh ^{-1}(c x)\right )}{c^2 \sqrt{1-c^2 x^2}}\\ &=\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int e^{-x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{2 c^2 \sqrt{1-c^2 x^2}}+\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \operatorname{Subst}\left (\int e^x (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{2 c^2 \sqrt{1-c^2 x^2}}\\ &=\frac{e^{-\frac{a}{b}} \sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac{a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt{1-c^2 x^2}}-\frac{e^{a/b} \sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac{a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{2 c^2 \sqrt{1-c^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.242509, size = 154, normalized size = 1. \[ -\frac{e^{-\frac{a}{b}} \sqrt{-(c x-1) (c x+1)} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac{\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^{-n} \left (\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )^n \text{Gamma}\left (n+1,-\frac{a+b \cosh ^{-1}(c x)}{b}\right )-e^{\frac{2 a}{b}} \left (-\frac{a+b \cosh ^{-1}(c x)}{b}\right )^n \text{Gamma}\left (n+1,\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )}{2 c^2 \sqrt{\frac{c x-1}{c x+1}} (c x+1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x*(a + b*ArcCosh[c*x])^n)/Sqrt[1 - c^2*x^2],x]

[Out]

-(Sqrt[-((-1 + c*x)*(1 + c*x))]*(a + b*ArcCosh[c*x])^n*(-(E^((2*a)/b)*(-((a + b*ArcCosh[c*x])/b))^n*Gamma[1 +
n, a/b + ArcCosh[c*x]]) + (a/b + ArcCosh[c*x])^n*Gamma[1 + n, -((a + b*ArcCosh[c*x])/b)]))/(2*c^2*E^(a/b)*Sqrt
[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(-((a + b*ArcCosh[c*x])^2/b^2))^n)

________________________________________________________________________________________

Maple [F]  time = 0.278, size = 0, normalized size = 0. \begin{align*} \int{x \left ( a+b{\rm arccosh} \left (cx\right ) \right ) ^{n}{\frac{1}{\sqrt{-{c}^{2}{x}^{2}+1}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x)

[Out]

int(x*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}^{n} x}{\sqrt{-c^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*arccosh(c*x) + a)^n*x/sqrt(-c^2*x^2 + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-c^{2} x^{2} + 1}{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}^{n} x}{c^{2} x^{2} - 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*x^2 + 1)*(b*arccosh(c*x) + a)^n*x/(c^2*x^2 - 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \left (a + b \operatorname{acosh}{\left (c x \right )}\right )^{n}}{\sqrt{- \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*acosh(c*x))**n/(-c**2*x**2+1)**(1/2),x)

[Out]

Integral(x*(a + b*acosh(c*x))**n/sqrt(-(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

sage0*x